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k=—1
Let y=2—(x+1)?
x+1:iJ§j§
x=-1+2—y (NA) orx=-1-,2—y (= x<-1)
flixo —1-v2-x, x<2
( )=17(x)
f(x)=x
= 2—(x+1) =

= x?+3x-1=0
Using GC, x =-3.303 (since domain of f is x < -1)

Areaof A = Fexsinxdx

[e smx] I e* cos x dx
—e? —{[ex cos x]g +I05eX sin x dx}
z z
=e2— —1+I02exsinxdx
2.|'fexsinxdx:e5+1

Fe* sin x dx =1(e2 +1j
0 2

Volume

= z{'foz(x+x2 +%x3j2 —'[Og(exsin X)Z:I dx

~ 3.19 units®

x*+3xy+y®=3
diff w.r.t x

dy

2x+3xd 2 dy =0

+3y+3y ix

dy —2x-3y
dx 3x+3y?

Tangent // x-axis, —-2x—-3y=0
-2
3

Sub y=% into x*+3xy+y®=3
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5
2+(2J§)2 e 23

Largest possible value of 6 = sin‘l(i] +tan? &
V13 1
=1.88 rad (3s.f)
(i) arg(w*+2)=arg((w+2)*)=0
= arg(w+2)=-6

Im(z)

Largest value of @ =tan™* 33
(2,0} 2
o 1
P Re(z) =1.20 rad
For the half-lines arg(w+3\/§i) =0 and
arg(w*+2) =0 to intersect,0 < 6 <1.20
3sf).
(0.-343

Height of an isosceles L/ = , |(ax)’ X x\/:
Area of one L/ _EX(X\/:JZ X gL

Area of base = 6- X—\/: 3x2\/:

300 = [3X H}y—(\% a —%Jx VARRREE @

Surface Area, S = £3x2 la? —%} 2+ 2xy +4axy

100

[ az_ﬂxz

From (1), y=

Therefore




ds , 1 200 400a |1

—=2|6,/a"—— [x— + —

dx 4 \/2 \/2 1 |x
a a’—

Let d—S: 0
dx

200
3(2a-1)

\ 200
" T 3(2a+1)(2a-1) (L+2a)=




a_i .
4 4

2
&5 6ozt 20, 4008 11,
dx 4 \/2 1 \/a2_1 X

as x>0=x*>0 and a>%:>a2—%>0

Recall that y = 100
[ 2 1 }Xz

4

therefore . — 100 = 100
X g_l o g_l 200

4 4 )\ 3(2a-1)

~ 3 _3(2a-1) 3J2a-1_ \/Za—l
2a+1

==

Method 1(Graphical):

Since a>1, therefore 0< 222 <1 or 0<, |22 71 <1 , [Draw graph to
2 2a+1 2a+1
show],
Therefore 0< 3 2a-1 <3
2a+1
Method 2(Algebraic)
3J2a-1 \/Za -1 \/ 2
2a+ 2a+1 2a+1
. 1 1
Since a>=, = 2a+1>2>0 =0< <=
2 2a+1 2
=0>- >-1
2a+1
=1>1- >0

2a+1




. dy
i) Letw=ye', —=e'—L+ ye'
) ARErTE
dy e
—Z 4+ y=
g Y T30
e‘d—y+ye‘:L
dt t-30
w1
dt t-30
1 1 ]
IdW:I—dt:— —dt sincet<20
t-30 30-t

w=In(30-t)+C

ye' =In(30-t)+C
t=0,y=0=0=In30+C
So,C=-1In30
y=e"[In(30-t)-In30]

=o' |n(%")

dix

ii—=e

)dt2

%:—e’#A

dt

Xx=e'+At+B

t=0, d—)(:2:2=—1+A
dt

So,A=3

t=0,x=1=B=0

Hence, x =e ' +3t




i)y

1 X

(60.0, — e®°In30)

) Let Z=X+VYi
(x+yi)2 =4+ 43i
(x2 —y2)+2xyi = 4+4+/3i
Comparing real and imaginary parts,
x2—y?=4 ) = 43 L

From (2), N )
Sub (3) in (1):
12

y2

y*+4y?-12=0

y =4

(v +2) -16=0

2, 5_ 2, o_
y'+2=4 o V" +2=-4 (rejected since Y €U )

y? =2
y=v2 o y=—v2
28
When y=\/§, V2

When y:—\/i, x=—/6
Hence 2=V6+2i of 2=—V6-42i

Alternative solution:
22 =4+ 43i

T
i—=

=8¢ 3




[T
|(—+2n7z)
=8 '3 n=-10

7= \/§ei”(1+:n) n=-10

1

S5z

—JBe 6, \Be®

=\/§(cos(—5§j+isin(—%n, x/g(cosgﬂsin%j
=2\/§(—§+isin(—%n, Zﬁ(cosgﬂsinéj
Hence 2=—V6-+2i o z=6+2i

(w*)’ = 4+443i

(i)
W =4-443i
_ 86i(3+2nﬂj
[ T+6nx
:Se( 3 j
_i[iz+6n7zj
W= 26 9 n= _1) 0!1
Iz i 57
=2e 9,2 9,2 °
Method 2:

(w*)® =4+ 443i

= 8ei%
_ 8ei[g+2nﬁ)
i 8ei(7r+§nnj
o Zei(m;m;rj Ceton

T T i57r

w=2e 9, 2e_|§, 2 9

(iii) Since v is obtained by a counter clockwise rotation of the point
representing z° through one right angle about the point (0,1) on the

Argand diagram, Vi is obtained by a counter clockwise rotation of the
point representing 2% -i through one right angle about the origin.




Hence v—i=i(22—i) lm(z)

@

. L _ K 4,?5
_|(4+4\@| |) N iqg:\=v /,’.%4, 3—1)Ez2—i
=y—1e_ ’
:(1—4\/§)+4i S {(8Y)
‘ Re(z)
v:(1—4\/§)+5i ‘
Let P, denotes the proposition: u, = coS I forall neld”.
n

Forn=1,LHS = u, = cosx = RHS.

So Py is true.
Assume Py is true for some k €[1". That is, u, = coikx . (IH)
We need to show that assuming that Py is true, then Py, must also be true.
cos(k +1)x
That is, we must show that u,,, =ﬂ.
k+1
For n=k+1,
LHS =u,,=u, - 2ksinﬁsin(k +1jx+coskx byr.r.
k(k+1) 2 2
= coskx__ 1 2ksin§sin(k +£jx+coskx by (IH)
k k(k+1) 2 2

(k +1)cos kx—2ksin;sin(k +;)x—coskx

k(k+1)

coskx—2sin 5sin k +1 X
2 2

k+1

coskx +[ cos (K +1) x—coskx |
= e (By Factor Formula)
+

=— 7 =RHS
k+1

Thus Py is true.
Since Py is true and P is true = Py is true, by MI, Py, is true.

4N

5
i) ?ncos %‘%

n=1

n 1 1 3n 1 1
= CcOS—+ —CcOoSm+ —COS—+ Zc052n+ .t mcosZNn




Y 18" (Y
- a_ on Zaj n
n=1 n=1
0¥ nnb 1 O¥ (— 1)n
iii) By (ii), ?COS—?Z—
(>iii) By (ii) an;l - >3 Zan;1 -

(STE NS AT oY

by putting x = 1 in the Maclaurin’s expansion of In(1+ x) in MF15 which

gives 1- l+ 1 ...=In2.
2 3

A direction vector parallel to I3 is given by ab—fa

aab
Tl

Since I; is perpendicular to I3, a-(ab—pa)=0 == |
a

Therefore, I3 is parallel to ab—&;ba, i.e. b—{@ a
[a al
11\ (17
17 107, 3 11 6
Direction vector of I3 is given by b—(@]aﬁ 3 ——2 :1 10 |=| -7
o 4 e 12) 12
10
2
3 6
Equation of I3is r=| -5 [+ A| =7 |, where A €[] .
2 2
6 -3
Clearly, the direction vectors | —7 | and | 4 | are non-parallel. Hence the two
2 -1

lines are not parallel.
3+6L 10-3u

Equating | -5—-7A |=| -3+4pu |,
2+2\ 1-p

there are no unique values for A and p that satisfy the 3 equations. Therefore I3
and I, are skew.




6 -3 -1
7| 4 |=| 0
2 -1 3

Vector normal to both Isand I, is | O |, which is direction vector of |5
3
11) (17 34
10 |x| 3 |=| -10
2 4 -137
—-34
Vector normal to plane containing |; and I, is | 10
137
Let required angle be 6.
-1\ (-34
0 || 10
137

3
Using sinf = ~—~—<= = 0=83.9"
\/10x 20025

10

x:1+0030:>d—xz—sin0
do

y=23in¢9:ﬂ=2c039
deo

d_y =-2cotd
dx

Equation of tangent:
y—2sing=-2cotf(x—1-cosd)

y =-2cotd(x—1-cosd)+2sind
~ 2{—0050(x—1—cos¢9)+sin2 0}

sin@

2

—C0SOX +Cos O +cos® O +sin? 6
sin@

2(—cot Ox+cot &+ cosecd)

AtP, == Equation of tangent at P:y=2(\@x+2—\@)

AtQ, 6=

ol o

Equation of tangent at Q: y = 2(—/3x+ 2 + \@)

The 2 tangents meet at R: 2(\/§X+2—\/§) =2 —x/§x+2+\/§)

x=landy=4




Hence the y-coordinate of point R is 4.

Equation of tangent at P: y = 2(J§x +2- J§)
J3-2
V3

Equation of tangent at Q: y = 2(—\@x +2+ \@)

J3+2
J3
A :1X4X(J§+2 \/§—2] 8

Aty=0, x=

Aty=0, Xx=

2 B BB

B= J'OZ y dx
= Zjosin 6(~singdo)
=2[sin*0do

= jo (1-cos20)dg

:[e_sinza} _

2 0
8

A-B=———z
J3

————— END OF PAPER ————




