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1 It is given that the curve 2
= + +y ax bx c  passes through the point A(–1, 20) and has a 

stationary point at B(3, 4). 
 

(i) Find the values of a, b and c. [3] 
 

(ii) By completing the square for 2 ,+ +ax bx c  or otherwise, describe a sequence of 

transformations that map 2
=y x  onto 2 .= + +y ax bx c  [2] 
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3 The curve C has parametric equations 
2

,  ,e−
= =

−

tt
x y t

t a
 where a is a positive real constant 

and 0a t− < ≤ . 

 
 
(i) The tangent to the curve C at t = 0 is perpendicular to the line 4y − x = 0.  

Show that a = 4. [3] 

Using the value of a in part (i), 

(ii) what can you say about the gradient of the curve C as 2t → − ? [1] 

(iii) sketch the curve C, including any points of intersection with the axes and the equation(s 

of any asymptotes. [2] 

 

 

4 Referred to the origin O, the points A and B are such that OA = a
����

 and OB = b
����

, where a and b 

are non-parallel vectors. The point M on OA extended is such that : 1:1OA AM = , and the 

point N on OB is such that : 1: 2ON NB = . There exists a point P such that A, B and P are 
collinear and M, N and P are collinear. 

 

 (i) Find OP
����

 in terms of a and b. [3] 
 

 (ii) Show that the area of the quadrilateral OAPN can be written as k ×a b , where k is a 

constant to be found. [3] 
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5 It is given that 
2( )

f ( ) ,  ,   and 0.
x k

x x x k k
x k

+
= ∈ ≠ >

−
R  

 
(i) Use a non-calculator method to find the range of values of x for which f is increasing.  

   [4] 
           

(ii)    Given that k = 3, sketch the curve y = f(x), labelling clearly the coordinates of any points 

of intersection with the axes, the coordinates of any stationary points, and the 
equation(s) of any asymptotes. [3] 

 

6 The functions f and g are defined by 
 

f : x � cos 
4

x
π 
 
 

 + 3.5, for ,x ∈R 3 4,x≤ < and 

g : x � 7 2x− , for ,x ∈R 2 4.x< ≤  

 

(i) Find f 
−1

, stating its exact domain.  [3] 

(ii) Show that gf 
−1

 exists. [1] 

(iii) Sketch the graph of y = g(x) and find the range of gf 
−1

. [3] 

 
 

7 The complex number z satisfies both 4 3i 5z − − ≤  and Re( ) 8z ≤ . 

 
(i) On an Argand diagram, sketch the locus of z. [3] 

(ii) Find the maximum value of ( )arg 6 3iz + − . Label the point corresponding to this 

maximum value on your diagram with the letter P and find the exact value of z in this 
case, leaving your answer in the form ix y+ . [5] 

 
 
8 (a)   In Marathon A, there are 20 participants. The prizes are awarded according to the 

following rule: the first prize is $1000; the second prize is 4/5 of the first prize, the third 
prize is 4/5 of the second prize, and so on, till the 20th prize. 
 
(i) What is the total amount of money that the organisers need to have for the prize 

fund?  [2] 

(ii) What is the assumption needed for your calculation in part (i) to be valid?     [1] 

In Marathon B, the prizes are awarded according to the following rule: the last prize is 
$15, the second last prize is $185 more than the last prize, the third last prize is $185 
more than the second last prize, and so on, till the first prize. Determine the maximum 
number of prizes to be awarded if the organisers have only $100 000 to sponsor the 
prize fund. 
  [2] 

(b)  The sum of the first n terms of a series is given by 
1

1

2
10

5

+

−
−

n

n
. Show that the series is a 

geometric series and state the value of the common ratio.         [4] 
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9 (a)  

In the diagram above, 5AB = , 3BC = , 6BD = , angle 
2

ACB
π

=  radians and 

angle θ=CBD  radians. Given that θ is a sufficiently small angle, show that 

  
( )

1
2 2 225 48 1

24
5 ,

5
8θ θ θ θ≈ ≈ −− + +A kD

 
 
 for a constant k to be determined. [6] 
 

(b) Given that the Maclaurin series expansion of 
1sine

− nx
 is 1 + 2x + bx

2, find the values of 
the real constants b and n. [4] 

 

10 A sequence u1, u2, u3, ... is such that u1 = 1 and 1nu
+ = nu  + 

6

( 2)( 3)n n+ +
, for n ≥ 1. 

(i) Prove by mathematical induction that 
nu  = 

3

2

n

n +
. [4] 

(ii) Find 
1

6

( 2)( 3)

N

n n n= + +
∑ . [2] 

(iii) Hence find the exact value of 
10

3

( 2)( 3)n n n

∞

= + +
∑ . [3] 

(iv) Using the result obtained in part (ii), find 
6

6

( 2)( 3)

N

j j j= − −
∑  in terms of N. [2] 
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11 (a) Show that the differential equation ( )
2d

2 1 e
d

xy
y x

x
+ = +  may be reduced by the 

substitution 2e x
z y=  to ( )

2 2d
1 e

d

x xz
x

x

+
= + . Hence, find the general solution for y in 

terms of x. [5] 

 
(b) A freshly brewed cup of coffee has an initial temperature 95°C. It is placed in a room 

where the temperature is a constant at 20°C. As the coffee cools down, the rate of 
decrease of its temperature θ °C after time t minutes is proportional to the temperature 
difference (θ – 20)°C. It is cooling at a rate of 1°C per minute when its temperature is 
70°C. 
 
(i) By setting up a differential equation, find the rate of cooling of the coffee when its 

temperature is 40°C and show that 0.0220 75eθ −
= +

t . [6] 
 
(ii) Comment on whether the model can be regarded as a good model of the situation 

in the real world. [1] 
 

12 The curve 1C  has equation 
2

2 1
4

x
y+ = . The curve 2C  has equation 

2
2 1

4

x
y− = . 

 

(i) Sketch 1C  and 2C  on the same diagram, labelling clearly the exact coordinates of the 

point(s) of intersection with the axes and the equation(s) of the asymptote(s), if any. [4] 
 

(ii) Find the volume of revolution when the region bounded by 1C , 2C  and the line 1y =  

for 0x ≥  is rotated completely about the x-axis. Give your answer correct to 4 decimal 
places. [4] 

 

(iii) By using a substitution of the form cosx a θ= , where a is a positive constant and 

0
2

π
θ≤ ≤ , find the exact area bounded by 

1C  , the positive x-axis and the line x = 1. [6] 

 

––– End of Paper ––– 
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