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 Answer all the questions. 

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of 

angles in degrees, unless a different level of accuracy is specified in the question. 
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Unsupported answers from a graphic calculator are allowed unless a question specifically states 

otherwise.  

Where unsupported answers from a graphic calculator are not allowed in a question, you are 

required to present the mathematical steps using mathematical notations and not calculator 

commands.  

 You are reminded of the need for clear presentation in your answers. 
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1 Use the method of mathematical induction to prove that  
1

1 1 1 1
2 1

4 4 33

nn

r
r

r
n



  
   

 
 . [5] 

 

  

2  The function f  is defined by 

1
f : ln

1
x

x

 
 
 

,   x , 1 1x   . 

         

  (i) Show that 1f   exists. [1]            

  (ii) Define 1f   in a similar form. [3] 

 (iii)  Find an expression for  g x for each of the following cases: 

(a)  fg x x  [1] 

(b)    
2

gf 1x x   [2] 
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The diagram shows the graph of 2 exy x   . The two roots of the equation 2 e 0xx    

are denoted by  and   where 0   and 0  . 

 

  (i) Find the values of  and   correct to 4 decimal places. [2] 

 A sequence of positive real numbers 1 2 3, , ,...x x x  satisfies the recurrence relation 

                                                            1 ln 2n nx x    

 for 1.n    

  (ii) Prove algebraically that, if the sequence converges, then it converges to  . [2] 

 (iii) Use a calculator to determine the behaviour of the sequence when 1 2x  . [1] 

 (iv) By referring to the graph above, prove that 1  if n n nx x x    .  [2] 
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4 The diagram below shows the graph of  fy x .  

 

 

 

 

 

 

 

 

. 

  

 

 

 

The curve passes through the origin and has turning points at  18, 27  and  6, 3 . It is 

given further that the curve intersects the line 2y   at 8x    and 3x   . On separate 

clearly labelled diagrams, sketch the graphs of 

 

  (i)   f 2y ax  , [3] 

 (ii) 
 

1

f 2
y

ax



, [3] 

 where a is a positive real constant. 

When m k ,  f 2 1ax mx    has two real and distinct roots. Hence or otherwise, state the 

least value of k in terms of a. [1] 

  

5 Given that  1cos 2y x , prove that 

22

2

d d
sin 2 0

d d

y y
y x

x x

 
  

 
. [3] 

  (i) By further differentiation of this result, find the series expansion of y in ascending 

powers of x up to and including the term in 
3x . Give the coefficients in exact form. [3] 

 (ii) Hence find the series expansion of 
 1

2

cos 2

1 3

x

x




 in ascending powers of x up to and 

including the term in 
2x . Give the coefficients in exact form.    [2]  

y 

x 
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12x    

3y x   

 6, 3  

 18, 27  

 fy x
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6 The number of trees in a forest after t years is x. The number of trees increases at a rate of 

x k

t


 per year where k is the initial number of trees. Trees are chopped off at a rate of 

5000

5t 
 

per year.  In addition, environmentalists also plant 1000 new trees every year. 

 

  (i) Write down a differential equation to model the population of trees in the forest. [1] 

 

  (ii) By using the substitution 
x k

y
t


 , show that the above differential equation can be 

   reduced to 

 
d 1000

d 5

y

t t



. [2] 

 

 (iii) Given that the number of trees returns to k after 10 years, express x in terms of t and k.  

Hence by considering the graph of x against t or otherwise, deduce the minimum initial 

number of trees (to the nearest integer) such that the trees will not become extinct. [6] 

 

7 The equations of three planes 1p , 2p , and 3p  are 

5 2 13,

2 5 1,

4 ,

x y z

x y z

x y z 

  

   

  

 

 respectively, where  and   are constants. 

  (i)  Find the acute angle between the planes 1p and 2p .  [2] 

 The planes 1p  and 2p  intersect in a line l . 

  (ii) Find a vector equation of l . [2] 

 (iii) Given that all three planes meet in the line l , find   and  .  [3] 

 (iv)  Given instead that the plane 3p  intersects the planes 1p  and 2p at distinct lines 1m  and 

2m  respectively, such that 1m  is parallel to 2m , describe the geometrical relationship of 

the planes 1p , 2p  and 3p . Hence comment on the values of   and  . [3] 
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8    (a) Solve the equation 5 2 2i 0z    , giving the roots in the form  

     ie , where 0 and .r r        [4] 

 Show the roots on an Argand diagram. [2] 

 (b) Show that 2 2
i i

e e 2isin
2

 


  .  Hence show that 
i

i

e 1 icot 1
21 e 2





 
  

  
. [4] 

 

9 It is given that  
1

f 2
1

x
x

 


. 

  (i) On separate diagrams, sketch the graphs of  fy x  and  fy x , giving the 

coordinates of any points where the graphs meet the x- and y- axes. You should label the 

graphs clearly.   [4] 

  (ii) Use a non-calculator method to find the area bounded by  fy x , 
5

4
x  , 2x   and 

the x-axis.  [4] 

 (iii) The region R is bounded by  fy x , 2y  and 
3

2
x  . Find the volume of revolution 

formed when R is rotated completely about the y-axis. [4] 

 

 

 

10 The parametric equations of a curve C are  

3 3cos , 2sinx y      where 0
2

  


 . 

 

  (i) Sketch the graph of C.          [2] 

  (ii) Find 
x

y

d

d
 in terms of  .          [2] 

 (iii) The tangent to the curve C at the point  3 3cos , 2sinP t t  intersects the x-axis and the  

y-axis at the points U and V respectively. Show that the coordinates of U are 

 cos , 0a t , where a is a constant to be found. Find the coordinates of V. [5] 

 (iv) Find a cartesian equation of the locus of the mid-point of UV as t  varies. [3] 
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11 (a)   (i) Show that 2( 1)! !( 1) !( 1)k k k k k k     . [1] 

   (ii) Hence find 2

1

!( 1)
n

k

k k


 . [3] 

  (iii) Using your answer in part (ii), find  
1

2

1

1 !( 2 2)
n

k

k k k




   . [3] 

 (b)  The graph of 2 1e xy  , for 10  x , is shown in the diagram. Rectangles of equal 

width are drawn as shown in the interval between x = 0 and x = 1. 

 

  

 

 

 

 

 

 

 

 

 

 

  (i) Show that the total area of all the n rectangles, A, is given by 
 

2

2n

2

n

e 1 ee

1 e
n

 
 

 
 
 

.   [2] 

  (ii) By considering the area under the curve 2 1e xy  , find the exact value of the limit 

of A as n  . [2] 

 (iii) Hence show that 

2

2

e

e 1

n

n

k

n


 

 
 

, where k is a constant to be found. Find the largest 

possible value of k. [2] 
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