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Equation of tangent at the point with parameter p: 
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(ii) 
Equation of tangent at the A (i.e. 1p = ): 

3

2 2
y

x
= +  

 

When 0y = , 3x = −  

( 3,0)T −  

 

Equation of normal at A: 
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(i) 

A random sample is a sample where every employee has an equal chance of being 

selected and each employee is selected independently of each other. 
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(ii) 

Assign each employee a number from 1 to 1000. 

Use a random number generator to generate 100 distinct numbers between 1 and 1000 

(inclusive). 

Select the employees with the randomly generated numbers. 
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(iii) 

Stratified sampling. 

The number of employees in the sample is proportional to the number of employees that 

work in the different shifts and hence the sample will give a better representation of all 



the employees. 
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(i) 
Let nS  be the random variable for the number of students who stop to watch the concert 

in an n-minute interval. 

3 ~ Po(18)S  

3 315) 1 14) 0.791 2( ( 9P S P S≥ = − ≤ =  

0.792 (3 s.f.)=  
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(ii) 
Let tL  be the random variable for the number of students who leave the concert venue in 

a t-minute interval. 

~ Po(3 )tL t  

1)P( 0.6tL ≥ =  

P( 0) 0.4tL = =  

3e 0.4t− =  

0.30543 (5 d.p.)t =  
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(iii) 
5 ~ Po(30)S   5 ~ Po(15)L  

Since 30 10> , 5  ~ N(30,30) approximatelyS  

Since 15 10> , 5  ~ N(15,15) approximatelyL  

5 5 ~ N(15, 45)S L−  
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0.543 (3 s.f.)=  
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(i) 
10.2x =  

2 0.031667 0.0317 (3 s.f.)s = =  
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(ii) 

Assume X follows a normal distribution. 

0 0: 1H µ =  

1 0: 1H µ ≠  

Perform a 2-tailed t-test. 

Test statistic, ~ (12)
/

X
t

s n
t

µ−
=  

where 0.031667s = , 13n =  

4.0523t =  

p-value 0.0016038 0.05 α= < =  

Reject 0H . There is sufficient evidence at the 5% significance level to conclude that the 

mean amount of rice in each packet is no longer 10 kg. 
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(iii) 

0.160 (3 s.f.)α =  

9 )][[P( 1 1 P( 1 )]1X Y− < < − < <  



(i) 0.099988 (5 s.f.)=  
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(ii) 

[P( 5 5 P( 5 5)][ )] 0.099988X Y −− < < − < <  

0.893187 0.099988= −  

0.793199 0.793 (3 s.f.)= =  

 

9 

(iii) 
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0.888 (3 s.f.)=  
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(iv) 

2(0.793199) 2(0.099988)(1 0.893187)+ −  

0.651 (3 s.f.)=  
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(i) 

 
 

10 

(ii) 
Model (A): 0.867r =  

Model (B): 0.999r = −  

For model (B), | |r  is closer to 1 compared to model (A). Hence, model (B) is more 

appropriate. 

OR 

As t increases, the values of h increase at a decreasing rate. Hence, model (B) is more 

appropriate. 
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(iii) 
Regression line: 
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When 22h = , 5.61 (3 s.f.)t =  
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(iv) 

a remains unchanged. 

b will increase by k. 
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(ii) 2
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(iii) 
1

4

4(26)(25)(24)(10)( )
0.372 (3 s

6
.)

3
.f

C
=  

 



11 

(iv) 

4 4

2 2

4

(26)(10)(9)( ) (10)(26)(25)( )

36

C C+
 

0.0316 (3 s.f.)=  
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(i) 

Let S be the random variable for the lifetime of a Standard battery in hours. 
2~ N(300,30 )S  

P( 310) 0.369 (3 s.f.)S > =  
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(ii) 

Let L be the random variable for the lifetime of a Long Lasting battery in hours. 
2~ N(500,50 )L  

1 10 ~ N(500,71500)5SS L+ + −�  

1 10P( 0) 0.0307 (3 s .5 .f )LSS < =+ + −�  
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(iii) 

Let T be the random variable for the number of torchlights out of 10 that are in working 

condition. 

~ B(10,0.97)T  

P( ) 1 P(9 8)T T≥ ≤= −  

0.965493 0.965 (3 s.f.)= =  

 

12 

(iv) 

Let U be the random variable for the number of boxes out of 15 that have at least 9 

torchlights that are in working condition. 

~ B(15,0.965493)U  

P(12 ) P(15 14 12)) P(U U U−≤ ≤=<<  

0.396 (3 s.f.)=  
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(v) 

Let V be the random variable for the number of torchlights out of 100 that are spoilt. 

~ B(100,0.03)V  

50100n = ≥  is large 

3 5np = <  

~ Po(3)V  approximately 

5 4)P 0.185 (3 s.f( P( .1 ))V V≥ ≤ == −  
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(vi) 

~ N(800,3400)S L+  

 

(0.97)[P( 750)] 0.780 (3 s.f.)S L+ > =  

 

 

 

 

 

 

 


