1JC 2014 Prelim Paper 1 1

1 Adam bought a total of 50 fruits consisting of apples, oranges and pineapples. The
apples, oranges and pineapples cost $0.80, $0.60 and $1.20 each respectively. The
total cost of all the fruits he bought is $40. If the cost of apples is doubled and that of
oranges is halved, then the total cost of all the fruits that he bought would be $53.
Find the number of each type of fruit bought by Adam. (3]

2 It is given that x, y, z are the first three terms of a geometric progression. When the
three terms are arranged in the order of z, x, y, they form three consecutive terms of an
arithmetic progression.
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Show that (EJ + (EJ —2=0. [4]
y y

Hence determine if the sum to infinity of the geometric progression exists. [2]

(x2—2x+4)(x—3)

Without the use of a calculator, solve the inequality (x+2)
X+

(+* =2} +4)(]x-3)
(+2)

Hence solve the inequality >0. (2]

Solve the equation z* = J3-i, giving the roots in the form re'® where r>0
and -7 <0<r. [4]

Show the roots on an Argand diagram and state the cartesian equation of a

geometrical shape that the roots lie on. (3]
2
Express 5+—x2 in the form of A + B -, where A and B are
(2+x)(l—x) (2+X) (l—x)
constants to be found. [3]
5+ x°

Hence, expand as a series of ascending powers of x up to and

(2+x)(l—x)2

including the x* term. [4]

State the range of values of x for which the expansion is valid. [1]
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The diagram shows the graph of y=f(x) with asymptotes y =k, x=0 and
the graph cuts the x-axis at (a,0).

On separate diagrams, sketch the graphs of
1

) y= ()

i  y=yf(-x),

giving the equations of any asymptotes and the coordinates of any points where
the curves cross the x- and y-axes. [4]

and

The curve y = g(x) undergoes the transformations A, B and C in succession:

A. A stretch parallel to the x-axis with scale factor 2,
B. A reflection in the y-axis, and
C. A translation of 1 unit in the direction of the y-axis.

Find an expression for g(x) if the equation of the resulting curve is y =1-—.
X

(3]

2n
A sequence u,, u,, u,, ... is such that u, =% and u,, =u, +%(%j forall n>1.

Write down the values of u,, u, and u, . [1]

By considering 1-u, or otherwise, write down a conjecture for u,. Use the

method of mathematical induction to prove the conjecture. [5]
N 2r
1
Hence find Z E(—) in terms of V. [2]
~ 4\2
ST 3
Find the smallest value of N such thatz —(—j exceeds —. [2]
e~ 4\2 50
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8 (a) Find the exact value of the constant p such that

p+9 1 i 1
— dx:_[ — dr.
'L VI9—x 0 1-4x

1
(b) Use the substitution x =cos” @ to find the exact value of J.2 IL dx. [5]
o Vl—x

9 Relative to the origin O, the position vectors of points A and B are a and b
respectively, where a and b are non-zero and non-parallel vectors. The point P on OA
is such that OP : PA =2 : 3. The point Q is such that OPQB is a parallelogram.

(i) Find OQin terms of a and b. [3]

(ii) Show that the area of the triangle OAQ can be written as k|a><b| , where kis a
constant to be found. (2]

(iii)  State the ratio of the area of triangle OPB to area of triangle OAB. [1]

(iv)  Given axbis a unit vector, |a| =2 and the angle between a and b is 60°, find

the exact value of |b| [3]

10 @) On a single Argand diagram, sketch the locus of points representing the
complex number z such that

|z-4-2i<2  and  [z-3<|z-9) . 3]

(ii) Find the greatest and least possible values of

@ |4, [4]
()  arg(z). [3]
11 The curve C has equation y =xcos2x, where 0< x< 7.

(i) Find the exact x-coordinates of the points where C crosses the x-axis. [3]

(ii)  Sketch C, stating the coordinates of any points where the curve crosses the
x- and y-axes. [2]
(iii)  Find the exact value of L |x cos 2x| dx. [4]

4

(iv)  Find the volume of revolution when the region bounded by the curve C, the
x-axis and the line x = 7 is rotated completely about the x-axis. (2]
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12 [It is given that a cone with radius r, height 4 and slant height / has curved surface area
zrl ]

(a) A drinking cup is manufactured in the shape of a cone. It has a volume of
507 cm’. Show that
_ 225007° e

r,
2
r

A2

where A is the curved surface area of the cone.

Use differentiation to find the height # cm and radius r cm of the cup that
will require the least amount of material. [8]

(b)  Another drinking cup of the same shape is manufactured. At the instant
when the depth of water in the drinking cup is /4 cm, the volume V cm’ of the

zh’

water is given by V = . The cup is filled and it is discovered

that there is a leak at the vertex of the cup and the volume of water in the cone
is decreasing at the constant rate of 3 cm’s™". Calculate,

(i) the rate at which the depth is decreasing at the instant when the depth
is 2 cm, [3]

(ii)  the time taken in seconds for the depth to decrease from 6 cm to 3 cm.

(2]
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